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This paper deals with the experimental analysis of piping systems under operating
conditions in the "eld of vibration and acoustic analysis. A new approach to identify the
boundary conditions of a part of a curvilinear structure is presented. The basic concept
consists of solving an inverse problem where the measured response of the system tested is
combined with an incomplete analytical model in order to identify the boundary dynamical
state in the frequency domain. As in "nite element methods, the tested network is described
using elements and nodes. An original technique using a transfer matrix of continuous
elements provides a small-size analytical model. In addition, condensation procedure is used
to eliminate all degrees of freedom (d.o.f.) having a modelled boundary condition and to
reduce the size of the solved inverse problem. Since identi"cation of boundary conditions is
performed, the analysis of dynamic response of the tested network may be performed
without further matrix computation. The validity and the feasibility of the approach are
shown using actual test results. Examples concerning real applications are also presented.

( 2000 Academic Press
1. INTRODUCTION

In many cases, the dynamic behaviour of structures and machines is strongly dependent on
operating conditions. Besides modifying the excitation forces acting on a system, coupling
phenomena inherent to operating conditions may strongly a!ect the mechanical behaviour
of the system. For example, the quality factor and the frequency bandwidth of an acoustic
"lter may be changed signi"cantly by the e!ects of a temperature gradient or a turbulent
#ow. The complexity of such behaviour and the growing need for accuracy makes it
necessary to resort to experimental analyses that have to be carried out under operating
conditions. This implies that some excitations and some boundary conditions can neither
be modelled nor measured.
0022-460X/00/230495#20 $35.00/0 ( 2000 Academic Press
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On the other hand, inverse methods are speci"cally used when direct measurements are
not possible. The assessment and the reliability of an inverse method generally depend on
the size and the complexity of the identi"ed model. For large structure analysis, sub-structur
ing allows a signi"cant reduction of the model size and leads to a better conditioned inverse
problem. One of the major di$culties encountered in this case is the description of the
interface conditions which de"ne part of the boundary conditions for each substructure.

In this context, the present paper is focused on experimental analyses that should be
carried out under operating conditions involving unknown boundary conditions. In particu
lar, the case of #uid-"lled piping networks is investigated [1]. These systems are usually
subject to vibro-acoustic and aero-acoustic coupling which are often responsible for poorly
understood sources of excitation (as in pumps, valves, internal combustion engines).
Moreover, these systems usually constitute large networks which have uncertain behaviour
and which may be a!ected by ageing modi"cations. An in situ diagnostic analysis very often
requires experimental analysis only on the part of the piping network where abnormal
behaviour is suspected. A typical example is the piping systems of energy production plants
which are often several kilometres long and include several singularities.

A brief review of the dominant tendencies of experimental approaches for acoustic and
vibration analysis, developed during last decades follows. Three classes of methods may be
distinguished. The "rst class is basically related to the "eld of the experimental modal
analysis. This widely used approach consists of exploiting, in a time or frequency domain,
the response of an excited system, in order to extract its modal properties and update its
analytical model [2}9]. This requires controlled or modelled boundary conditions.
However, recent research is focused on adapting these techniques to operating experimental
analyses and thereby overcoming their main limitations. The basic concept consists of using
only output data to identify modal properties [10, 11]. Hermans et al. [10] show the
e$ciency of this approach to identify modal parameters (eigenfrequencies, damping ratio,
eigenmodes) under working conditions. Nevertheless, it is observed that the assessment of
the modal participation factors is conditioned by the whiteness of the unknown excitations
acting on the system.

The second class includes methods based on characterization of waves propagating in the
tested part of the structure. These approaches are basically developed to perform experimen
tal analysis under uncontrolled conditions. They have a local character because wave
properties change when they cross any singularity or bifurcation. The wave intensity
identi"cation method is the most well known [12}15]. It is based on the use of a sensor
array to identify complex wave amplitudes.

The third class includes methods which analyze the measured response as a dynamic
signal without associating any mechanical model to the tested system. They are commonly
used for dynamic system monitoring and damage detection. These methods provide only
global information on the system behaviour (black box) observed from a single or a multiple
response.

In this paper, a new hybrid experimental/analytical approach is presented. Similar to
methods of the second class, it is basically suitable for uncontrolled conditions such as
working system analyses, and like those of the "rst class, it uses a global analytical model
and leads to a detailed analysis. The most signi"cant feature of this study consists of
combining a global analytical model and experimental data in order to perform experiment
al analysis of dynamic behaviour of a complex structure having unknown boundary
conditions. The main purpose is the identi"cation of boundary conditions describing the
mechanical links between the part of the system studied and its unknown singularities
on the one hand, and the mechanical links between it and the rest of the system on the
other.
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Classically, a mechanical link is characterized by a generalized displacement or a
generalized force. The experimental data consist of the response of a few points of the
studied part (displacement, velocity, internal strains, etc.). Curvilinear structures composed
of beams, #uid-"lled pipes and lumped elements constitute the main application of this
study. However, the basic concepts may be applied to other types of structures having linear
behaviour. Both the mechanical characteristics of the test part and the location of the
unknown boundary conditions are assumed to be well known. The dynamic behaviour of
curvilinear elements is expressed using a continuous element formulation which avoids
discretization errors, as encountered in "nite element models, and allows the use of
a minimal number of degrees of freedom. Furthermore, an exact condensation procedure is
introduced. It enables the processing of the degrees of freedom having modelled boundary
conditions to be separated from the processing of the degrees of freedom having unknown
boundary conditions and reduces the size of the inverse problem.

After a detailed presentation of the identi"cation method in the second section, the third
section gives some results showing the validity and the feasibility of the applied approach in
the "eld of vibration and acoustic.

2. IDENTIFICATION METHOD

2.1. PRINCIPLE

The case where some of the boundary conditions are unknown is considered. This
situation occurs either if only a part of the system is modelled or if the network studied
includes singularities having unknown behaviour. Several examples are encountered:

f the vibro-acoustic behaviour of pumps, valves and several regulation systems is often
poorly understood under working conditions,

f the supporting structure of pipe networks usually have a complex vibratory behaviour,
f the acoustic behaviour of branch tubes such as pressure pick-ups or side branches provide
complex coupling phenomena,

f natural excitations caused by #uid and structure interactions are often di$cult to model.

The lack of boundary conditions makes the analysis of the dynamic response of the
system an ill-posed problem. The method developed consists of using the measurement of
the response at a set of internal points of the system to overcome the lack of data. An inverse
problem is then solved where the relationship between measured data and unknown
boundary conditions is inverted. This equation is derived from the structure model being
tested. The instrumented structure then constitutes a &&macro generalized sensor'' allowing
an experimental assessment of unknown boundary conditions. Figure 1 presents a basic
example illustrating the features of the method where the boundary conditions between the
tested part and its singularities, those associated with supporting conditions and those
corresponding to connections between the studied part and the rest of the network, have to
be identi"ed.

Figure 2 summarizes the di!erence between the direct and inverse problem treated here.
A direct problem, classically solved to perform predictive analysis, consists of modelling the
boundary conditions of a real system and then computing an estimation of its response
using a mathematical model idealizing its behaviour. An inverse problem is generally solved
when an identi"cation or a diagnostic analysis are needed. It consists of introducing
measured responses to replace the lack of modelling. In the present paper, the known data
of the modelled system are a part of the boundary conditions and a part of the system



Figure 1. Schematic diagram of the system.

Figure 2. Direct and inverse problem.
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response; its unknowns are the non-modelled boundary conditions and optionally the
complete response of the system.

The dynamic behaviour of the tested system is assumed to be linear. Only steady state
behaviour is considered so a frequency approach is used.
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2.2. STRUCTURE MODEL

Elements and nodes are used to model the test part of the structure. Elements describe all
the mechanical and geometrical properties. Nodes connect elements and make the junction
between the modelled structure and those parts outside the test part.

Beam structures and piping systems are considered. At each point of a curvilinear
element, a state vector composed of the generalized displacements MqN and the generalized
forces MQN can be de"ned. The structure model is based on a transfer matrix formulation
which relates the dynamic state of one section of an element to the dynamic state of any
other section. As an example, the classic transfer matrix of the Bernoulli straight beam is
presented below. It is derived exactly from the motion equations
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where k is the wave number, u is the angular frequency and (A, B, C, D) are the complex
wave amplitudes.

The state vector de"nition at the ends of the element gives eight equations
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where ¸ is the length of the element. Note that ¹
1

and M
1

are, respectively, the transverse
force and the bending moment applied to the beam by other parts of the structure. The
elimination of wave amplitudes A, B, C and D in equations (6)}(13) leads to the dimensionles
s transfer matrix for a given angular frequency u:
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where
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In general, the dynamic behaviour of an element is expressed by a transfer matrix
relationship:
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NT is the state vector of the left extremity (x"0), Mq
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the right extremity (x"¸) and [T(u)] is the transfer matrix of the element. Other examples
of transfer matrices of straight or curved tubes, with or without compressible #uids inside,
having a constant or a varying cross-section, are developed in references [1,16}19].

Sensors are placed at nodes or in curvilinear elements. For sensors placed inside an
element, the same formulation is used to relate experimental data to the structure degrees of
freedom. Indeed, the transfer matrix T[x

s
, u] relating the state vector of a sensor section
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) to the state vector of the element origin, is built up in the same manner as the
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A sensor can measure one or several components of the state vector of its cross-section.
A selecting matrix [A

s
] is used to extract the rows of the transfer matrix corresponding to
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Gathering all sensors at di!erent positions of an element leads to the sensor transfer matrix
relationship:
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where MC
e
N is the element sensor data, [T

s
] is the measurement transfer matrix and [B

k
] is

an assembling matrix.
For each element a transfer relationship, including experimental data, is then obtained:
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The assembling of transfer matrices is suitable for cascaded curvilinear elements without
any bifurcation. For such substructures, it may be performed before assembling the whole
structure. In this case, the resulting transfer matrix of the assembled substructure is the
product of elementary transfer matrices. For the general case of three-dimensional networks
including branched elements and bifurcations, an assembling procedure similar to "nite
element assembling technique is more suitable. To this end, equation (23) has to be
transformed into a sti!ness form where the generalized forces applied to the element and all
the measurements performed on the element are expressed in terms of its extremities
generalized displacements [20].

This transformation leads to
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Easwaran [20] shows that, in the case of a conservative element, the dynamic sti!ness
matrix obtained from the transfer matrix is symmetric, which means that Ze

12
equals Ze

21
.

This transformation is not possible if the submatrix [T
qQ

] is close to a singular matrix
which occurs in the vicinity of the element's clamped-clamped eigenfrequencies. A simple
subdivision of the element into two elements changes these eigenfrequencies and removes
this singularity.

Classically, elementary dynamic sti!ness matrices are assembled by connecting elements
to nodes and expressing the conservation (momentum conservation for structure and mass
conservation for #uid) and the continuity (displacement continuity for structure and
pressure for #uid) equation for each node. A global sensor data vector MCN is formed, and
the sensor data matrices [Z

se
] are also assembled by connecting elements to nodes. This

leads to a global equation expressing the generalized forces MQN and the measurements MCN
in terms of the degrees of freedom MqN:
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The continuous elements formulation, where the motion equations are integrated in an
exact manner, allows the dynamic behaviour of the system to be expressed using a small
number of degrees of freedom. For example, a straight element, whatever its length, can be
modelled using only one element. This formulation also has the advantage of allowing the
introduction of measurements at any location of the network with the same accuracy.

2.3. BOUNDARY CONDITIONS

In predictive problems, a boundary condition is de"ned by knowing the generalized
displacement or the generalized force or a relationship between them (impedance, re#ection
coe$cient, etc.). Therefore, two classic types of boundary conditions are usually used:
&&clamped''where the displacement is known (modelled), and &&free''where the force is known
(null or modelled). All other classic boundary conditions can be modelled using a particular
element described by a dynamic sti!ness matrix.

Some of the boundary conditions are unknown. Thus, a new type of boundary condition
has to be de"ned to make reference to the boundary degrees of freedom where neither



TABLE 1

Boundary condition types

Boundary condition Generalized displacement Generalized force

Link Will be identi"ed Mq
l
N Will be identi"ed MQ

l
N

Imposed or clamped Model data Mq
c
N Unknown MQ

c
N

Free or source Unknown Mq
f
N Model data MQ

f
N
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generalized forces nor generalized displacements are modelled. Both of them therefore have
to be identi"ed. This new type of boundary condition is referred to here as &&link'' degrees of
freedom (Table 1).

2.4. CONDENSATION AND INVERSION

The unknowns in equation (25) are the link d.o.f. forces and displacements Mq
l
Q

l
N, the free

d.o.f. Mq
f
N and the reaction forces MQ

c
N associated with clamped d.o.f. The number of

equations is equal to the number of d.o.f. plus the number of sensors. Therefore, in order to
get a full ranked system, the number of sensors must be at least equal to the number of link
d.o.f. Mq

l
N.

The inverse problem "rst aims to characterize the unknown boundary conditions by
identifying Mq

l
N and/or MQ

l
N. In a preliminary stage, before solving equation (25), a condensa

tion is performed in order to eliminate all other unknowns (associated with clamped and
free d.o.f.). For this reason, the d.o.f. are sorted according to their boundary condition type:
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where subscript &&s'' denotes sensor data. The elimination of d.o.f. associated with unknowns
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The condensation presents two points of interest. The "rst advantage is that it allows the
separation of the processing of modelled data Mq

c
N and MQ

f
N from the processing of

measured data MCN. It is noted that the step involving measured data consists of solving
a small linear system having a number of unknowns equal to the number of unknown
boundary conditions.

The second advantage of condensation appears if this procedure is combined with
a substructuring of the network. The condensation of modelled data may be achieved
separately for each substructure, so that only small matrices are inverted.

These two advantages improve the conditioning of the inverse problem and reduce the
sensitivity of the method to the data noise. Furthermore, this condensation does not
introduce any loss of accuracy because the dynamic behaviour of the system is expressed
using a physical and complete space (continuous elements model).

Equation (28) is solved to obtain the displacements Mq
l
N. Overabundant measurements

should be used in order to minimize the e!ects of errors caused by both limited accuracy of
the measurements and the network modelling assumptions. A least-squares method [21,22],
with a weighting matrix [=], is used
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The estimation of Mq
l
N or MQ

l
N allows computation of the system response under actual

test conditions. The complete response may be computed using a de-condensation procedur
e which leads to the d.o.f. Mq
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N and the reacting generalized forces MQ
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The transfer matrix which relates a state vector of any section to its element d.o.f. allows
the computation of displacements, strains and stresses at any location of the studied system.

This de-condensation procedure is also performed without any approximation and does
not require a supplementary matrix computation.

Otherwise, Mq
l
N and MQ

l
N may be used to model the boundary condition if a behaviour

model of the connected element exists and has to be identi"ed. In this case, the method
proposed provides a local observation of the connected element from the measurement of
the global response of the structure. Compared to a classic updating technique where the
connected element is included in the structure, this approach provides a better conditioned
inverse problem.

3. RESULTS

A computer program has been developed. It includes several continuous and lumped
elements and provides a useful tool for inverse and predictive analysis of piping systems in
the acoustic and vibration "elds. The structure of the data entries and the processing
algorithm are similar to those used in "nite element programs.

The program and its several functionalities have been validated using a set of idealized
tests which were successfully carried out. For these idealized tests, sensor data were
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simulated without including any noise. In all cases tested, the agreement between the
identi"ed unknowns and those used to set-up the test simulation was perfect. The accuracy
of the identi"cation was equal to the numerical precision of the computer.

In order to test the feasibility and the e$ciency of the method, several real tests have been
carried out in the vibration and acoustics "eld. Three examples are presented here, the "rst
is an academic test where some forces exciting a simple beam were measured and identi"ed
and where a simple supporting condition was identi"ed. The two other examples provide
real applications of the method. The second test was carried out in order to characterize
a complex support used in nuclear plant piping systems. The third test was an application to
piping system acoustics and was intended to analyze the behaviour of a branched resonator
under realistic working conditions, when submitted to a turbulent grazing #ow.

3.1. VALIDATION TEST

The validity of the method was "rst checked using a vibratory test bench (CAMELIA)
developed by the Research Department of the French Electricity Company (EDF). It
consisted of a circular straight pipe placed on two &&V-form'' supports. Two pieces of rubber
inserted between the pipe and the supports insured a permanent contact and make the
corresponding boundary conditions more linear, #exible and damped. The pipe was 3 m
long and 2 mm thick, its external diameter was 42 mm. Two shakers were installed to excite
the system. Forces applied by the shakers exciting the pipe and the corresponding accelerati
on have been measured. These experimental data were only used to check the identi"cation
results. In addition, 16 accelerometers were distributed along the pipe as shown in Figure 3.
They were used to identify boundary conditions, assumed to be unknown. The frequency
band [5}391 Hz] which includes "ve eigenfrequencies (13}49}84}182}364 Hz) was investig
ated.

The signals delivered by sensors were collected using a 40-channel signal analyser.
Real-time processing provided the autopower of a reference channel and the cross-power of
all the other channels with respect to the reference one. The Fourier spectrum of each
channel, referenced in phase with respect to the reference channel was estimated as the ratio
of the cross-power of the channel to the square root of the autopower of the reference
channel.

Coherences were also computed and visualized, so as to control the linearity of the system
and the signal/noise ratio of the measurements. In all cases, the obtained coherences were
greater than 0)7 except for very low frequencies ((10 Hz) and some single frequencies.

Several tests have been carried out with di!erent excitations. A selection of obtained
results is presented here. Table 2 describes these tests.

In all cases, the method presented above were used in order to identify the shaker
excitations and end support conditions. Thus, the corresponding boundary conditions were
assumed to be completely unknown. Only the pipe (AE) was modelled using Timoshenko
beam continuous elements. Both supports were assumed to be punctual (no bending
moment is applied on the pipe by the supports). In the case of the CAMELIA 2 con"guratio
n, the unknowns of the inverse problem were: the transverse displacements v
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Several choices of sensors were tested. It was then established that "ve sensors (2, 7, 9, 10,
15) provided enough information to correctly identify the four unknown boundary conditio
ns. Figure 4 gives a comparison between measured and identi"ed forces F

1
and displacemen

t v
A

corresponding to the left shaker's d.o.f. Both graphs show a very good agreement
between measured and identi"ed unknowns, for frequencies greater than 20 Hz. These



Figure 3. A schematic representation of the CAMELIA test bench.

Figure 4. CAMELIA 2 results* identi"ed and measured displacement (upper): (**) identi"ed displacement;
( ) measured displacement; and ( ) phase, and force (lower); ( ) identi"ed force; ( ) measured force;
and ( ) phase, corresponding to the left shaker boundary condition. The left axis corresponds to the modulus.
The right axis corresponds to the phase di!erence between measured and identi"ed force or displacement.
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results are representative of data obtained from the set of tests which were carried out with
this experimental set-up. The use of more overabundant sensors allowed a signi"cant
enhancement of the identi"cation at low frequencies. Figure 5 shows that the left shaker
force identi"ed with 16 sensors is closer to the measured one than the force identi"ed using
only "ve sensors. In fact, the signals collected by the accelerometers were signi"cantly noisy
below 20 Hz; the use of more overabundant sensors reduced the noise e!ects.



Figure 5. CAMELIA 2 results*in#uence of overabundant measurements for noisy low frequencies. Identi"ed
left shaker force using "ve sensors (}s}) is compared to that identi"ed using 16 sensors (}n}) and the measured
one (}]}).

TABLE 2

¸ist of CAME¸IA tests described

Test Excitation con"guration

CAMELIA 1 One white-noise excitation at point D: F
1
"0; F

2
(u)"Cte

CAMELIA 2 Two correlated in phase white-noise excitation at B and D
CAMELIA 3 Two opposite phase white-noise excitations at B and D
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The support dynamic sti!ness of end supports has also been examined. The identi"cation
of bending moments M

A
and M

E
applied to the pipe by the supports shows that they can be

neglected when compared to the associated transverse forces R
A

and R
E
. Therefore, each

support/pipe connection can be modelled by a one-degree-of-freedom reactive link. The
corresponding dynamic sti!ness may be estimated by the ratio of the identi"ed transverse
force to the identi"ed transverse displacement (Z

A
"R

A
/v

A
; Z

E
"R

E
/v

E
). The left support

dynamic sti!ness Z
A

obtained in three tests (see Table 2) are compared. Although the
supports were not excited in the same manner due to di!erent test con"gurations, Figure
6 shows a good agreement between the corresponding identi"ed sti!nesses. It is particularly
noted that the two opposite phase excitations test does not excite the same eigenmodes as
the two correlated in phase excitations test. The real part of the sti!ness exhibits a parabolic
form, which can be compared with a mass}spring behaviour, and the imaginary part is
a nearly straight line, which characterizes the support damping.

The case where the user cannot safely predict the location or the origin of a vibrating
source was also examined. Some free d.o.f. should then be declared as unknown boundary
conditions. In order to examine the ability of the method to locate actual excitations and
links, the identi"cation was performed in the CAMELIA 2 con"guration supposing that
there was another unknown excitation or connection at the middle of the pipe (point C).
Additional unknowns v

C
and F

C
were then introduced. Figure 7 shows that the identi"catio

n of the real excitation F
B
remains very close to that measured. The "ctitious identi"ed force

F
C

was very low compared to the real one. This means that the method is able to locate the
real excitations at points B and D.



Figure 6. Dynamic sti!ness of the left support. Upper: Real part*Lower: imaginary part CAMELIA 1 (++),
CAMELIA 2 (**), CAMELIA 3 (} } }).

Figure 7. In#uence of a "ctitious link boundary condition. Con"guration CAMELIA 2. (++) measured
excitation; (**) identi"ed actual excitation and (}]}) "ctitious force.
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In this method, it was assumed that the test structure was well known. Thus, sensitivity of
the identi"ed boundary conditions against inaccuracies in the model of the test structure
was investigated. The con"guration CAMELIA 2 was considered, and Young's modulus of
the pipe was assumed equal to 2)1]105 MPa instead of 1)85]105 MPa. A "ctitious
unknown link was also added at the middle of the pipe (point C). In order to avoid
the errors due to the measurement noise, an overabundant number of sensors was used.



Figure 8. In#uence of a tested structure model error. Con"guration CAMELIA. Fictitious force corresponding
to the link boundary condition added at the middle of the pipe (}]}) compared to identi"ed (**) and measured
(++) shaker force.
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Figure 8 shows the identi"ed shaker force F
B

compared to the measured one and the
identi"ed "ctitious force F

C
. Compared to the results in Figure 7, a signi"cant identi"cation

error can be observed. This result shows that it is important to use an accurate model of the
test structure. It is also shown here that the magnitude of the "ctitious force may be used to
detect the model inaccuracies and the resulting e!ects on the identi"ed boundary
conditions.

All these results proved the feasibility and the e$ciency of the identi"cation method. The
case of two correlated forces was particularly interesting as it showed the ability of the
approach also to locate correlated vibratory sources. The characterization of the support
sti!ness was also performed for a set of di!erent and uncontrolled excitations. The
agreement between results obtained shows the ability of the method to characterize
the support behaviour in real functioning conditions. The following example focuses on this
point.

3.2. PIPING SUPPORT CHARACTERIZATION

This test gives an industrial example. The developed method was used to analyze and
characterize an example of complicated supporting conditions of a nuclear power plant
piping system: the cross-wall support. A laboratory test stand was constructed. A freely
suspended straight pipe of 5)5 m length was attached to the support 2)4 m from its upstream
end and was submitted to an uncontrolled excitation. The excitation and support resisting
forces were measured. The support was composed of a clamping collar "xed on a steel frame
(Figure 9). A force sensor was placed between the frame and the collar and thus it did not
measure exactly the resisting force applied to the pipe by the collar.

Seventeen accelerometers were used to identify the excitation force, the support force and
bending moment, and the resisting forces at the extremities of the pipe (suspended by elastic
bands). Figure 10 compares the measured and identi"ed excitation. One can see that, except
for a few narrow bands where identi"ed force shows some wrong peaks, the shaker force
was correctly identi"ed. Figure 11 shows the same result for the identi"ed support resisting
force. For frequencies lower than 150 Hz, the identi"ed resisting force was in good agreeme
nt with that measured. A signi"cant disagreement was noticed for higher frequencies. In
fact, this di!erence between the measured and identi"ed force was caused by the inertia of



Figure 9. Cross-wall support test stand.

Figure 10. Cross-wall support characterization test * identi"ed excitation compared to measured one. Left
axis: modulus. Right axis: phase di!erence between identi"ed and measured force. ( ) identi"ed excitation;
( ) measured excitation; and (++) phase.
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the collar. The static sti!ness of the support was very high, so, at low frequencies,
displacement and acceleration of the collar remained very low and the corresponding
inertia forces could be neglected. In contrast, when the frequency increased, the velocity of
the collar also increased and the collar kinematic energy became non-negligible.

It was not possible to insert the sensor between the collar and the pipe to measure
accurately the resisting force. The sensor was actually measuring the force applied by the
frame to the collar. This means that the identi"ed force was more reliable than that
measured and closer to the actual force. This provides an example where the use of the
inverse method becomes necessary.

Figure 12 shows the real part of the supporting dynamic sti!ness. It shows that the "rst
support eigenfrequency is about 312 Hz. This frequency is a consequence of the geometrical
and mechanical characteristics of the support and of the mechanical behaviour of the
assembly. Modelling the latter is generally a di$cult task because it often depends on
linking conditions (working gap, clamping ranges, etc.). Other eigenfrequencies appear



Figure 11. Cross-wall support characterization test*identi"ed support resisting force compared to that
measured. Left axis: modulus. Right axis: phase di!erence between identi"ed and measured force. (**) identi"ed
resisting forct; ( ) measured resisting force; and (++) phase.

Figure 12. Dynamic sti!ness of cross-wall supporting.
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when examining this dynamic sti!ness (119, 164, 203, 215, 238, 296 Hz). They correspond to
some local eigenmodes of the support.

3.3. BRANCHED RESONATOR CHARACTERIZATION

The developed method has also been tested in the acoustic "eld. The feature of this test is
that the experimentation was carried out in order to investigate a physical phenomenon
occurring at the interface between a main pipe and a branched singularity. The method is
useful because it provides a close observation of the interface behaviour without performing
any intrusive measurements.

A test stand was constructed in order to analyze the e!ects of grazing #ow on branched
resonators. The test system was composed of a 5 m test tube including a branched
Helmholtz resonator connected to the laboratory high-pressure network (Figure 13). The
grazing #ow was turbulent and fully developed. The aim of the study was to investigate the
local aero-acoustic coupling at the interface between the main pipe and the resonator. This
coupling may strongly a!ect the quality factor of the resonator and modify its resonance
frequency.

The pipe between the "rst microphone and the right end was modelled. A transfer matrix
taking into account the viscous dissipation and the #ow e!ects was used [19]. The open end



Figure 13. Branched Helmholtz Resonators* the resonator is composed of a branched neck and a volume.
Downstream of the resonator, one can see the loudspeaker (sloped upstream box) providing an acoustic excitation
inside the pipe and the connection with the laboratory high-pressure #ow network.

Figure 14. Schematic diagram of the #ow testing stand used to identify the acoustic pressure and velocity at the
entry of the Helmholtz resonator submitted to a turbulent grazing #ow. && ? '' indicates unknown boundary
conditions.
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of the pipe is modelled using the Levine}Schwinger's model [23]. The resonator was
assumed to be completely unknown. The corresponding boundary condition was then
considered as a &&link'' boundary condition. Otherwise, the mean #ow involved some
unknown sources in the upstream part of the test pipe, so the boundary conditions at the
entry of the test pipe could neither be controlled nor modelled and had to be identi"ed
(Figure 14).

Two #ush mounted B&K 1
4
A microphones were placed on either side of the branched

resonator to measure the internal acoustical pressure. The corresponding experimental data
were used in the identi"cation procedure.

Figure 15 shows the identi"ed impedance for several mean #ow speeds. The nominal
resonance frequency of the resonator was about 270 Hz. Some known e!ects of mean #ow



Figure 15. Identi"ed impedance of a Helmholtz resonator submitted to a grazing #ow normalized by the
speci"c impedance of the media (oc). (}]}) Mach 0; (}r}) Mach 0)05; (h) Mach 0)1; (}s}) Mach 0)15; and (}j})
Mach 0)2.
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can be observed: shift of resonance frequency and increasing of damping e!ects. This proves
the reliability of the results. The entry impedance of a set of 25 resonators was identi"ed.
Currently, these results are being investigated for analyzing and modelling the grazing #ow
e!ects at the entry of a branched tube.

4. CONCLUSION

In the "eld of experimental analysis of operating systems, a new method of boundary
condition identi"cation has been presented. It concerns the case where only a part of an
analyzed system is tested and where the interface conditions with the rest of the system and
dynamic sources generated inside are nither modelled nor controlled. Unknown boundary
conditions make predicting the response of the system a di$cult problem to de"ne. In this
paper, it is shown that the measurement of the response of the system at a few internal
points removes the weakness of the problem and replaces the lack of inputs.

The "rst stage, and the main aim of the method presented, consists of the characterization
of the dynamic state of the system boundary. Since unknown boundary conditions are
identi"ed, a diagnosis or a predictive analysis may be performed. Otherwise the characteriza
tion of the boundary condition may address the analysis of the singular behaviour of the
boundary subsystem. In this case, the test structure is used as a non-intrusive macro-sensor
providing some information on the connected subsystem. The identi"cation of boundary
conditions leads to a local observation of the singularity behaviour.

This method compliments the existing methods which are based on wave intensity
measurement and on experimental modal analysis. It has the advantage that it can be
applied to three-dimensional curvilinear structures. An inverse problem is solved where the
target boundary conditions (inputs) are globally expressed in terms of the measured
response (outputs) in the frequency domain.

The developments discussed are focused on piping system network analysis. In this case,
the use of an exact transfer matrix is shown to be very suitable. In fact, it allows the system
behaviour to be expressed without any discretization error and leads to a few d.o.f. in the
analytical model. Furthermore, the condensation of the modelled boundary conditions
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allows the model data and experimental data to be separated when solving the inverse
problem, which improves its conditioning.

Several experimental tests are presented in the paper. The "rst is an academic test which
is performed in order to check the feasibility and the validity of the approach. The results
show the e$ciency of the method when identifying generalized forces and displacement
associated with an unknown boundary condition. The results also show that the method
allows the characterization of the reactive boundary condition without any signi"cant
dependence on the excitation of the tested system.

The second and the third tests provide some practical examples. The support characteriza
tion test is an industrial case where the usefulness of the method for in situ characterization
in industrial environment is shown. The third test provides an example of a laboratory
application where a physical phenomenon has to be analyzed without making intrusive
measurements.
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APPENDIX A: NOMENCLATURE

MCN measured response
MCM N source term following condensation of MQ

f
N and Mq

c
N in the measurement transfer matrix

EI #exural sti!ness
k wave number
M

fz
bending moment

MqN generalized kinematic co-ordinates (linear or angular position for structure, acoustical
pressure for gas and liquid)

Mq
c
N clamped d.o.f.

Mq
f
N free d.o.f.

Mq
l
N d.o.f. having an unknown boundary condition

MQN generalized forces (forces and moments for structure, acoustical #ow for gas and liquid)
MQ

c
N reacting generalized forces associated with clamped d.o.f.

MQ
f
N modelled excitation, generalized forces associated with free d.o.f.

MQ
l
N unknown generalized forces corresponding to an unknown boundary condition

MQ1
l
N source term following condensation of Mq

f
N and Mq

c
N in the dynamical sti!ness matrix

S cross-section area
[T] transfer matrix
¹

y
transverse shear force

[W] weighting matrix
[Z] dynamic sti!ness matrix
[Z

l
] dynamic sti!ness matrix condensed to link d.o.f.

[Z
s
] measurement/d.o.f. transfer matrix condensed to link d.o.f.

v transverse displacement
o density
h
z

transverse rotation.
MHN state vector
u angular frequency.
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